PK Z0ZE+
composer.jsonnu [ {
"name": "brick/math",
"description": "Arbitrary-precision arithmetic library",
"type": "library",
"keywords": [
"Brick",
"Math",
"Arbitrary-precision",
"Arithmetic",
"BigInteger",
"BigDecimal",
"BigRational",
"Bignum"
],
"license": "MIT",
"require": {
"php": "^8.0"
},
"require-dev": {
"phpunit/phpunit": "^9.0",
"php-coveralls/php-coveralls": "^2.2",
"vimeo/psalm": "5.0.0"
},
"autoload": {
"psr-4": {
"Brick\\Math\\": "src/"
}
},
"autoload-dev": {
"psr-4": {
"Brick\\Math\\Tests\\": "tests/"
}
}
}
PK Z0ZVeWF WF CHANGELOG.mdnu [ # Changelog
All notable changes to this project will be documented in this file.
## [0.11.0](https://github.com/brick/math/releases/tag/0.11.0) - 2023-01-16
💥 **Breaking changes**
- Minimum PHP version is now 8.0
- Methods accepting a union of types are now strongly typed*
- `MathException` now extends `Exception` instead of `RuntimeException`
* You may now run into type errors if you were passing `Stringable` objects to `of()` or any of the methods
internally calling `of()`, with `strict_types` enabled. You can fix this by casting `Stringable` objects to `string`
first.
## [0.10.2](https://github.com/brick/math/releases/tag/0.10.2) - 2022-08-11
👌 **Improvements**
- `BigRational::toFloat()` now simplifies the fraction before performing division (#73) thanks to @olsavmic
## [0.10.1](https://github.com/brick/math/releases/tag/0.10.1) - 2022-08-02
✨ **New features**
- `BigInteger::gcdMultiple()` returns the GCD of multiple `BigInteger` numbers
## [0.10.0](https://github.com/brick/math/releases/tag/0.10.0) - 2022-06-18
💥 **Breaking changes**
- Minimum PHP version is now 7.4
## [0.9.3](https://github.com/brick/math/releases/tag/0.9.3) - 2021-08-15
🚀 **Compatibility with PHP 8.1**
- Support for custom object serialization; this removes a warning on PHP 8.1 due to the `Serializable` interface being deprecated (#60) thanks @TRowbotham
## [0.9.2](https://github.com/brick/math/releases/tag/0.9.2) - 2021-01-20
🐛 **Bug fix**
- Incorrect results could be returned when using the BCMath calculator, with a default scale set with `bcscale()`, on PHP >= 7.2 (#55).
## [0.9.1](https://github.com/brick/math/releases/tag/0.9.1) - 2020-08-19
✨ **New features**
- `BigInteger::not()` returns the bitwise `NOT` value
🐛 **Bug fixes**
- `BigInteger::toBytes()` could return an incorrect binary representation for some numbers
- The bitwise operations `and()`, `or()`, `xor()` on `BigInteger` could return an incorrect result when the GMP extension is not available
## [0.9.0](https://github.com/brick/math/releases/tag/0.9.0) - 2020-08-18
👌 **Improvements**
- `BigNumber::of()` now accepts `.123` and `123.` formats, both of which return a `BigDecimal`
💥 **Breaking changes**
- Deprecated method `BigInteger::powerMod()` has been removed - use `modPow()` instead
- Deprecated method `BigInteger::parse()` has been removed - use `fromBase()` instead
## [0.8.17](https://github.com/brick/math/releases/tag/0.8.17) - 2020-08-19
🐛 **Bug fix**
- `BigInteger::toBytes()` could return an incorrect binary representation for some numbers
- The bitwise operations `and()`, `or()`, `xor()` on `BigInteger` could return an incorrect result when the GMP extension is not available
## [0.8.16](https://github.com/brick/math/releases/tag/0.8.16) - 2020-08-18
🚑 **Critical fix**
- This version reintroduces the deprecated `BigInteger::parse()` method, that has been removed by mistake in version `0.8.9` and should have lasted for the whole `0.8` release cycle.
✨ **New features**
- `BigInteger::modInverse()` calculates a modular multiplicative inverse
- `BigInteger::fromBytes()` creates a `BigInteger` from a byte string
- `BigInteger::toBytes()` converts a `BigInteger` to a byte string
- `BigInteger::randomBits()` creates a pseudo-random `BigInteger` of a given bit length
- `BigInteger::randomRange()` creates a pseudo-random `BigInteger` between two bounds
💩 **Deprecations**
- `BigInteger::powerMod()` is now deprecated in favour of `modPow()`
## [0.8.15](https://github.com/brick/math/releases/tag/0.8.15) - 2020-04-15
🐛 **Fixes**
- added missing `ext-json` requirement, due to `BigNumber` implementing `JsonSerializable`
⚡️ **Optimizations**
- additional optimization in `BigInteger::remainder()`
## [0.8.14](https://github.com/brick/math/releases/tag/0.8.14) - 2020-02-18
✨ **New features**
- `BigInteger::getLowestSetBit()` returns the index of the rightmost one bit
## [0.8.13](https://github.com/brick/math/releases/tag/0.8.13) - 2020-02-16
✨ **New features**
- `BigInteger::isEven()` tests whether the number is even
- `BigInteger::isOdd()` tests whether the number is odd
- `BigInteger::testBit()` tests if a bit is set
- `BigInteger::getBitLength()` returns the number of bits in the minimal representation of the number
## [0.8.12](https://github.com/brick/math/releases/tag/0.8.12) - 2020-02-03
🛠️ **Maintenance release**
Classes are now annotated for better static analysis with [psalm](https://psalm.dev/).
This is a maintenance release: no bug fixes, no new features, no breaking changes.
## [0.8.11](https://github.com/brick/math/releases/tag/0.8.11) - 2020-01-23
✨ **New feature**
`BigInteger::powerMod()` performs a power-with-modulo operation. Useful for crypto.
## [0.8.10](https://github.com/brick/math/releases/tag/0.8.10) - 2020-01-21
✨ **New feature**
`BigInteger::mod()` returns the **modulo** of two numbers. The *modulo* differs from the *remainder* when the signs of the operands are different.
## [0.8.9](https://github.com/brick/math/releases/tag/0.8.9) - 2020-01-08
⚡️ **Performance improvements**
A few additional optimizations in `BigInteger` and `BigDecimal` when one of the operands can be returned as is. Thanks to @tomtomsen in #24.
## [0.8.8](https://github.com/brick/math/releases/tag/0.8.8) - 2019-04-25
🐛 **Bug fixes**
- `BigInteger::toBase()` could return an empty string for zero values (BCMath & Native calculators only, GMP calculator unaffected)
✨ **New features**
- `BigInteger::toArbitraryBase()` converts a number to an arbitrary base, using a custom alphabet
- `BigInteger::fromArbitraryBase()` converts a string in an arbitrary base, using a custom alphabet, back to a number
These methods can be used as the foundation to convert strings between different bases/alphabets, using BigInteger as an intermediate representation.
💩 **Deprecations**
- `BigInteger::parse()` is now deprecated in favour of `fromBase()`
`BigInteger::fromBase()` works the same way as `parse()`, with 2 minor differences:
- the `$base` parameter is required, it does not default to `10`
- it throws a `NumberFormatException` instead of an `InvalidArgumentException` when the number is malformed
## [0.8.7](https://github.com/brick/math/releases/tag/0.8.7) - 2019-04-20
**Improvements**
- Safer conversion from `float` when using custom locales
- **Much faster** `NativeCalculator` implementation 🚀
You can expect **at least a 3x performance improvement** for common arithmetic operations when using the library on systems without GMP or BCMath; it gets exponentially faster on multiplications with a high number of digits. This is due to calculations now being performed on whole blocks of digits (the block size depending on the platform, 32-bit or 64-bit) instead of digit-by-digit as before.
## [0.8.6](https://github.com/brick/math/releases/tag/0.8.6) - 2019-04-11
**New method**
`BigNumber::sum()` returns the sum of one or more numbers.
## [0.8.5](https://github.com/brick/math/releases/tag/0.8.5) - 2019-02-12
**Bug fix**: `of()` factory methods could fail when passing a `float` in environments using a `LC_NUMERIC` locale with a decimal separator other than `'.'` (#20).
Thanks @manowark 👍
## [0.8.4](https://github.com/brick/math/releases/tag/0.8.4) - 2018-12-07
**New method**
`BigDecimal::sqrt()` calculates the square root of a decimal number, to a given scale.
## [0.8.3](https://github.com/brick/math/releases/tag/0.8.3) - 2018-12-06
**New method**
`BigInteger::sqrt()` calculates the square root of a number (thanks @peter279k).
**New exception**
`NegativeNumberException` is thrown when calling `sqrt()` on a negative number.
## [0.8.2](https://github.com/brick/math/releases/tag/0.8.2) - 2018-11-08
**Performance update**
- Further improvement of `toInt()` performance
- `NativeCalculator` can now perform some multiplications more efficiently
## [0.8.1](https://github.com/brick/math/releases/tag/0.8.1) - 2018-11-07
Performance optimization of `toInt()` methods.
## [0.8.0](https://github.com/brick/math/releases/tag/0.8.0) - 2018-10-13
**Breaking changes**
The following deprecated methods have been removed. Use the new method name instead:
| Method removed | Replacement method |
| --- | --- |
| `BigDecimal::getIntegral()` | `BigDecimal::getIntegralPart()` |
| `BigDecimal::getFraction()` | `BigDecimal::getFractionalPart()` |
---
**New features**
`BigInteger` has been augmented with 5 new methods for bitwise operations:
| New method | Description |
| --- | --- |
| `and()` | performs a bitwise `AND` operation on two numbers |
| `or()` | performs a bitwise `OR` operation on two numbers |
| `xor()` | performs a bitwise `XOR` operation on two numbers |
| `shiftedLeft()` | returns the number shifted left by a number of bits |
| `shiftedRight()` | returns the number shifted right by a number of bits |
Thanks to @DASPRiD 👍
## [0.7.3](https://github.com/brick/math/releases/tag/0.7.3) - 2018-08-20
**New method:** `BigDecimal::hasNonZeroFractionalPart()`
**Renamed/deprecated methods:**
- `BigDecimal::getIntegral()` has been renamed to `getIntegralPart()` and is now deprecated
- `BigDecimal::getFraction()` has been renamed to `getFractionalPart()` and is now deprecated
## [0.7.2](https://github.com/brick/math/releases/tag/0.7.2) - 2018-07-21
**Performance update**
`BigInteger::parse()` and `toBase()` now use GMP's built-in base conversion features when available.
## [0.7.1](https://github.com/brick/math/releases/tag/0.7.1) - 2018-03-01
This is a maintenance release, no code has been changed.
- When installed with `--no-dev`, the autoloader does not autoload tests anymore
- Tests and other files unnecessary for production are excluded from the dist package
This will help make installations more compact.
## [0.7.0](https://github.com/brick/math/releases/tag/0.7.0) - 2017-10-02
Methods renamed:
- `BigNumber:sign()` has been renamed to `getSign()`
- `BigDecimal::unscaledValue()` has been renamed to `getUnscaledValue()`
- `BigDecimal::scale()` has been renamed to `getScale()`
- `BigDecimal::integral()` has been renamed to `getIntegral()`
- `BigDecimal::fraction()` has been renamed to `getFraction()`
- `BigRational::numerator()` has been renamed to `getNumerator()`
- `BigRational::denominator()` has been renamed to `getDenominator()`
Classes renamed:
- `ArithmeticException` has been renamed to `MathException`
## [0.6.2](https://github.com/brick/math/releases/tag/0.6.2) - 2017-10-02
The base class for all exceptions is now `MathException`.
`ArithmeticException` has been deprecated, and will be removed in 0.7.0.
## [0.6.1](https://github.com/brick/math/releases/tag/0.6.1) - 2017-10-02
A number of methods have been renamed:
- `BigNumber:sign()` is deprecated; use `getSign()` instead
- `BigDecimal::unscaledValue()` is deprecated; use `getUnscaledValue()` instead
- `BigDecimal::scale()` is deprecated; use `getScale()` instead
- `BigDecimal::integral()` is deprecated; use `getIntegral()` instead
- `BigDecimal::fraction()` is deprecated; use `getFraction()` instead
- `BigRational::numerator()` is deprecated; use `getNumerator()` instead
- `BigRational::denominator()` is deprecated; use `getDenominator()` instead
The old methods will be removed in version 0.7.0.
## [0.6.0](https://github.com/brick/math/releases/tag/0.6.0) - 2017-08-25
- Minimum PHP version is now [7.1](https://gophp71.org/); for PHP 5.6 and PHP 7.0 support, use version `0.5`
- Deprecated method `BigDecimal::withScale()` has been removed; use `toScale()` instead
- Method `BigNumber::toInteger()` has been renamed to `toInt()`
## [0.5.4](https://github.com/brick/math/releases/tag/0.5.4) - 2016-10-17
`BigNumber` classes now implement [JsonSerializable](http://php.net/manual/en/class.jsonserializable.php).
The JSON output is always a string.
## [0.5.3](https://github.com/brick/math/releases/tag/0.5.3) - 2016-03-31
This is a bugfix release. Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6.
## [0.5.2](https://github.com/brick/math/releases/tag/0.5.2) - 2015-08-06
The `$scale` parameter of `BigDecimal::dividedBy()` is now optional again.
## [0.5.1](https://github.com/brick/math/releases/tag/0.5.1) - 2015-07-05
**New method: `BigNumber::toScale()`**
This allows to convert any `BigNumber` to a `BigDecimal` with a given scale, using rounding if necessary.
## [0.5.0](https://github.com/brick/math/releases/tag/0.5.0) - 2015-07-04
**New features**
- Common `BigNumber` interface for all classes, with the following methods:
- `sign()` and derived methods (`isZero()`, `isPositive()`, ...)
- `compareTo()` and derived methods (`isEqualTo()`, `isGreaterThan()`, ...) that work across different `BigNumber` types
- `toBigInteger()`, `toBigDecimal()`, `toBigRational`() conversion methods
- `toInteger()` and `toFloat()` conversion methods to native types
- Unified `of()` behaviour: every class now accepts any type of number, provided that it can be safely converted to the current type
- New method: `BigDecimal::exactlyDividedBy()`; this method automatically computes the scale of the result, provided that the division yields a finite number of digits
- New methods: `BigRational::quotient()` and `remainder()`
- Fine-grained exceptions: `DivisionByZeroException`, `RoundingNecessaryException`, `NumberFormatException`
- Factory methods `zero()`, `one()` and `ten()` available in all classes
- Rounding mode reintroduced in `BigInteger::dividedBy()`
This release also comes with many performance improvements.
---
**Breaking changes**
- `BigInteger`:
- `getSign()` is renamed to `sign()`
- `toString()` is renamed to `toBase()`
- `BigInteger::dividedBy()` now throws an exception by default if the remainder is not zero; use `quotient()` to get the previous behaviour
- `BigDecimal`:
- `getSign()` is renamed to `sign()`
- `getUnscaledValue()` is renamed to `unscaledValue()`
- `getScale()` is renamed to `scale()`
- `getIntegral()` is renamed to `integral()`
- `getFraction()` is renamed to `fraction()`
- `divideAndRemainder()` is renamed to `quotientAndRemainder()`
- `dividedBy()` now takes a **mandatory** `$scale` parameter **before** the rounding mode
- `toBigInteger()` does not accept a `$roundingMode` parameter anymore
- `toBigRational()` does not simplify the fraction anymore; explicitly add `->simplified()` to get the previous behaviour
- `BigRational`:
- `getSign()` is renamed to `sign()`
- `getNumerator()` is renamed to `numerator()`
- `getDenominator()` is renamed to `denominator()`
- `of()` is renamed to `nd()`, while `parse()` is renamed to `of()`
- Miscellaneous:
- `ArithmeticException` is moved to an `Exception\` sub-namespace
- `of()` factory methods now throw `NumberFormatException` instead of `InvalidArgumentException`
## [0.4.3](https://github.com/brick/math/releases/tag/0.4.3) - 2016-03-31
Backport of two bug fixes from the 0.5 branch:
- `BigInteger::parse()` did not always throw `InvalidArgumentException` as expected
- Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6.
## [0.4.2](https://github.com/brick/math/releases/tag/0.4.2) - 2015-06-16
New method: `BigDecimal::stripTrailingZeros()`
## [0.4.1](https://github.com/brick/math/releases/tag/0.4.1) - 2015-06-12
Introducing a `BigRational` class, to perform calculations on fractions of any size.
## [0.4.0](https://github.com/brick/math/releases/tag/0.4.0) - 2015-06-12
Rounding modes have been removed from `BigInteger`, and are now a concept specific to `BigDecimal`.
`BigInteger::dividedBy()` now always returns the quotient of the division.
## [0.3.5](https://github.com/brick/math/releases/tag/0.3.5) - 2016-03-31
Backport of two bug fixes from the 0.5 branch:
- `BigInteger::parse()` did not always throw `InvalidArgumentException` as expected
- Dividing by a negative power of 1 with the same scale as the dividend could trigger an incorrect optimization which resulted in a wrong result. See #6.
## [0.3.4](https://github.com/brick/math/releases/tag/0.3.4) - 2015-06-11
New methods:
- `BigInteger::remainder()` returns the remainder of a division only
- `BigInteger::gcd()` returns the greatest common divisor of two numbers
## [0.3.3](https://github.com/brick/math/releases/tag/0.3.3) - 2015-06-07
Fix `toString()` not handling negative numbers.
## [0.3.2](https://github.com/brick/math/releases/tag/0.3.2) - 2015-06-07
`BigInteger` and `BigDecimal` now have a `getSign()` method that returns:
- `-1` if the number is negative
- `0` if the number is zero
- `1` if the number is positive
## [0.3.1](https://github.com/brick/math/releases/tag/0.3.1) - 2015-06-05
Minor performance improvements
## [0.3.0](https://github.com/brick/math/releases/tag/0.3.0) - 2015-06-04
The `$roundingMode` and `$scale` parameters have been swapped in `BigDecimal::dividedBy()`.
## [0.2.2](https://github.com/brick/math/releases/tag/0.2.2) - 2015-06-04
Stronger immutability guarantee for `BigInteger` and `BigDecimal`.
So far, it would have been possible to break immutability of these classes by calling the `unserialize()` internal function. This release fixes that.
## [0.2.1](https://github.com/brick/math/releases/tag/0.2.1) - 2015-06-02
Added `BigDecimal::divideAndRemainder()`
## [0.2.0](https://github.com/brick/math/releases/tag/0.2.0) - 2015-05-22
- `min()` and `max()` do not accept an `array` anymore, but a variable number of parameters
- **minimum PHP version is now 5.6**
- continuous integration with PHP 7
## [0.1.1](https://github.com/brick/math/releases/tag/0.1.1) - 2014-09-01
- Added `BigInteger::power()`
- Added HHVM support
## [0.1.0](https://github.com/brick/math/releases/tag/0.1.0) - 2014-08-31
First beta release.
PK Z0Z滭r5 5 , src/Internal/Calculator/NativeCalculator.phpnu [ maxDigits = 9;
break;
case 8:
$this->maxDigits = 18;
break;
default:
throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.');
}
}
public function add(string $a, string $b) : string
{
/**
* @psalm-var numeric-string $a
* @psalm-var numeric-string $b
*/
$result = $a + $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0') {
return $b;
}
if ($b === '0') {
return $a;
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$result = $aNeg === $bNeg ? $this->doAdd($aDig, $bDig) : $this->doSub($aDig, $bDig);
if ($aNeg) {
$result = $this->neg($result);
}
return $result;
}
public function sub(string $a, string $b) : string
{
return $this->add($a, $this->neg($b));
}
public function mul(string $a, string $b) : string
{
/**
* @psalm-var numeric-string $a
* @psalm-var numeric-string $b
*/
$result = $a * $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0' || $b === '0') {
return '0';
}
if ($a === '1') {
return $b;
}
if ($b === '1') {
return $a;
}
if ($a === '-1') {
return $this->neg($b);
}
if ($b === '-1') {
return $this->neg($a);
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$result = $this->doMul($aDig, $bDig);
if ($aNeg !== $bNeg) {
$result = $this->neg($result);
}
return $result;
}
public function divQ(string $a, string $b) : string
{
return $this->divQR($a, $b)[0];
}
public function divR(string $a, string $b): string
{
return $this->divQR($a, $b)[1];
}
public function divQR(string $a, string $b) : array
{
if ($a === '0') {
return ['0', '0'];
}
if ($a === $b) {
return ['1', '0'];
}
if ($b === '1') {
return [$a, '0'];
}
if ($b === '-1') {
return [$this->neg($a), '0'];
}
/** @psalm-var numeric-string $a */
$na = $a * 1; // cast to number
if (is_int($na)) {
/** @psalm-var numeric-string $b */
$nb = $b * 1;
if (is_int($nb)) {
// the only division that may overflow is PHP_INT_MIN / -1,
// which cannot happen here as we've already handled a divisor of -1 above.
$r = $na % $nb;
$q = ($na - $r) / $nb;
assert(is_int($q));
return [
(string) $q,
(string) $r
];
}
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
[$q, $r] = $this->doDiv($aDig, $bDig);
if ($aNeg !== $bNeg) {
$q = $this->neg($q);
}
if ($aNeg) {
$r = $this->neg($r);
}
return [$q, $r];
}
public function pow(string $a, int $e) : string
{
if ($e === 0) {
return '1';
}
if ($e === 1) {
return $a;
}
$odd = $e % 2;
$e -= $odd;
$aa = $this->mul($a, $a);
/** @psalm-suppress PossiblyInvalidArgument We're sure that $e / 2 is an int now */
$result = $this->pow($aa, $e / 2);
if ($odd === 1) {
$result = $this->mul($result, $a);
}
return $result;
}
/**
* Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/
*/
public function modPow(string $base, string $exp, string $mod) : string
{
// special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0)
if ($base === '0' && $exp === '0' && $mod === '1') {
return '0';
}
// special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0)
if ($exp === '0' && $mod === '1') {
return '0';
}
$x = $base;
$res = '1';
// numbers are positive, so we can use remainder instead of modulo
$x = $this->divR($x, $mod);
while ($exp !== '0') {
if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd
$res = $this->divR($this->mul($res, $x), $mod);
}
$exp = $this->divQ($exp, '2');
$x = $this->divR($this->mul($x, $x), $mod);
}
return $res;
}
/**
* Adapted from https://cp-algorithms.com/num_methods/roots_newton.html
*/
public function sqrt(string $n) : string
{
if ($n === '0') {
return '0';
}
// initial approximation
$x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1);
$decreased = false;
for (;;) {
$nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2');
if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) {
break;
}
$decreased = $this->cmp($nx, $x) < 0;
$x = $nx;
}
return $x;
}
/**
* Performs the addition of two non-signed large integers.
*/
private function doAdd(string $a, string $b) : string
{
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
/** @psalm-var numeric-string $blockA */
$blockA = \substr($a, $i, $blockLength);
/** @psalm-var numeric-string $blockB */
$blockB = \substr($b, $i, $blockLength);
$sum = (string) ($blockA + $blockB + $carry);
$sumLength = \strlen($sum);
if ($sumLength > $blockLength) {
$sum = \substr($sum, 1);
$carry = 1;
} else {
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$carry = 0;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
if ($carry === 1) {
$result = '1' . $result;
}
return $result;
}
/**
* Performs the subtraction of two non-signed large integers.
*/
private function doSub(string $a, string $b) : string
{
if ($a === $b) {
return '0';
}
// Ensure that we always subtract to a positive result: biggest minus smallest.
$cmp = $this->doCmp($a, $b);
$invert = ($cmp === -1);
if ($invert) {
$c = $a;
$a = $b;
$b = $c;
}
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
$complement = 10 ** $this->maxDigits;
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
/** @psalm-var numeric-string $blockA */
$blockA = \substr($a, $i, $blockLength);
/** @psalm-var numeric-string $blockB */
$blockB = \substr($b, $i, $blockLength);
$sum = $blockA - $blockB - $carry;
if ($sum < 0) {
$sum += $complement;
$carry = 1;
} else {
$carry = 0;
}
$sum = (string) $sum;
$sumLength = \strlen($sum);
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
// Carry cannot be 1 when the loop ends, as a > b
assert($carry === 0);
$result = \ltrim($result, '0');
if ($invert) {
$result = $this->neg($result);
}
return $result;
}
/**
* Performs the multiplication of two non-signed large integers.
*/
private function doMul(string $a, string $b) : string
{
$x = \strlen($a);
$y = \strlen($b);
$maxDigits = \intdiv($this->maxDigits, 2);
$complement = 10 ** $maxDigits;
$result = '0';
for ($i = $x - $maxDigits;; $i -= $maxDigits) {
$blockALength = $maxDigits;
if ($i < 0) {
$blockALength += $i;
/** @psalm-suppress LoopInvalidation */
$i = 0;
}
$blockA = (int) \substr($a, $i, $blockALength);
$line = '';
$carry = 0;
for ($j = $y - $maxDigits;; $j -= $maxDigits) {
$blockBLength = $maxDigits;
if ($j < 0) {
$blockBLength += $j;
/** @psalm-suppress LoopInvalidation */
$j = 0;
}
$blockB = (int) \substr($b, $j, $blockBLength);
$mul = $blockA * $blockB + $carry;
$value = $mul % $complement;
$carry = ($mul - $value) / $complement;
$value = (string) $value;
$value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT);
$line = $value . $line;
if ($j === 0) {
break;
}
}
if ($carry !== 0) {
$line = $carry . $line;
}
$line = \ltrim($line, '0');
if ($line !== '') {
$line .= \str_repeat('0', $x - $blockALength - $i);
$result = $this->add($result, $line);
}
if ($i === 0) {
break;
}
}
return $result;
}
/**
* Performs the division of two non-signed large integers.
*
* @return string[] The quotient and remainder.
*/
private function doDiv(string $a, string $b) : array
{
$cmp = $this->doCmp($a, $b);
if ($cmp === -1) {
return ['0', $a];
}
$x = \strlen($a);
$y = \strlen($b);
// we now know that a >= b && x >= y
$q = '0'; // quotient
$r = $a; // remainder
$z = $y; // focus length, always $y or $y+1
for (;;) {
$focus = \substr($a, 0, $z);
$cmp = $this->doCmp($focus, $b);
if ($cmp === -1) {
if ($z === $x) { // remainder < dividend
break;
}
$z++;
}
$zeros = \str_repeat('0', $x - $z);
$q = $this->add($q, '1' . $zeros);
$a = $this->sub($a, $b . $zeros);
$r = $a;
if ($r === '0') { // remainder == 0
break;
}
$x = \strlen($a);
if ($x < $y) { // remainder < dividend
break;
}
$z = $y;
}
return [$q, $r];
}
/**
* Compares two non-signed large numbers.
*
* @return int [-1, 0, 1]
*/
private function doCmp(string $a, string $b) : int
{
$x = \strlen($a);
$y = \strlen($b);
$cmp = $x <=> $y;
if ($cmp !== 0) {
return $cmp;
}
return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1]
}
/**
* Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length.
*
* The numbers must only consist of digits, without leading minus sign.
*
* @return array{string, string, int}
*/
private function pad(string $a, string $b) : array
{
$x = \strlen($a);
$y = \strlen($b);
if ($x > $y) {
$b = \str_repeat('0', $x - $y) . $b;
return [$a, $b, $x];
}
if ($x < $y) {
$a = \str_repeat('0', $y - $x) . $a;
return [$a, $b, $y];
}
return [$a, $b, $x];
}
}
PK Z0ZmK~L ) src/Internal/Calculator/GmpCalculator.phpnu [ init($a, $b);
if ($aNeg && ! $bNeg) {
return -1;
}
if ($bNeg && ! $aNeg) {
return 1;
}
$aLen = \strlen($aDig);
$bLen = \strlen($bDig);
if ($aLen < $bLen) {
$result = -1;
} elseif ($aLen > $bLen) {
$result = 1;
} else {
$result = $aDig <=> $bDig;
}
return $aNeg ? -$result : $result;
}
/**
* Adds two numbers.
*/
abstract public function add(string $a, string $b) : string;
/**
* Subtracts two numbers.
*/
abstract public function sub(string $a, string $b) : string;
/**
* Multiplies two numbers.
*/
abstract public function mul(string $a, string $b) : string;
/**
* Returns the quotient of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The quotient.
*/
abstract public function divQ(string $a, string $b) : string;
/**
* Returns the remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The remainder.
*/
abstract public function divR(string $a, string $b) : string;
/**
* Returns the quotient and remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return array{string, string} An array containing the quotient and remainder.
*/
abstract public function divQR(string $a, string $b) : array;
/**
* Exponentiates a number.
*
* @param string $a The base number.
* @param int $e The exponent, validated as an integer between 0 and MAX_POWER.
*
* @return string The power.
*/
abstract public function pow(string $a, int $e) : string;
/**
* @param string $b The modulus; must not be zero.
*/
public function mod(string $a, string $b) : string
{
return $this->divR($this->add($this->divR($a, $b), $b), $b);
}
/**
* Returns the modular multiplicative inverse of $x modulo $m.
*
* If $x has no multiplicative inverse mod m, this method must return null.
*
* This method can be overridden by the concrete implementation if the underlying library has built-in support.
*
* @param string $m The modulus; must not be negative or zero.
*/
public function modInverse(string $x, string $m) : ?string
{
if ($m === '1') {
return '0';
}
$modVal = $x;
if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) {
$modVal = $this->mod($x, $m);
}
[$g, $x] = $this->gcdExtended($modVal, $m);
if ($g !== '1') {
return null;
}
return $this->mod($this->add($this->mod($x, $m), $m), $m);
}
/**
* Raises a number into power with modulo.
*
* @param string $base The base number; must be positive or zero.
* @param string $exp The exponent; must be positive or zero.
* @param string $mod The modulus; must be strictly positive.
*/
abstract public function modPow(string $base, string $exp, string $mod) : string;
/**
* Returns the greatest common divisor of the two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for GCD calculations.
*
* @return string The GCD, always positive, or zero if both arguments are zero.
*/
public function gcd(string $a, string $b) : string
{
if ($a === '0') {
return $this->abs($b);
}
if ($b === '0') {
return $this->abs($a);
}
return $this->gcd($b, $this->divR($a, $b));
}
/**
* @return array{string, string, string} GCD, X, Y
*/
private function gcdExtended(string $a, string $b) : array
{
if ($a === '0') {
return [$b, '0', '1'];
}
[$gcd, $x1, $y1] = $this->gcdExtended($this->mod($b, $a), $a);
$x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1));
$y = $x1;
return [$gcd, $x, $y];
}
/**
* Returns the square root of the given number, rounded down.
*
* The result is the largest x such that x² ≤ n.
* The input MUST NOT be negative.
*/
abstract public function sqrt(string $n) : string;
/**
* Converts a number from an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base.
* @param int $base The base of the number, validated from 2 to 36.
*
* @return string The converted number, following the Calculator conventions.
*/
public function fromBase(string $number, int $base) : string
{
return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base);
}
/**
* Converts a number to an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number to convert, following the Calculator conventions.
* @param int $base The base to convert to, validated from 2 to 36.
*
* @return string The converted number, lowercase.
*/
public function toBase(string $number, int $base) : string
{
$negative = ($number[0] === '-');
if ($negative) {
$number = \substr($number, 1);
}
$number = $this->toArbitraryBase($number, self::ALPHABET, $base);
if ($negative) {
return '-' . $number;
}
return $number;
}
/**
* Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10.
*
* @param string $number The number to convert, validated as a non-empty string,
* containing only chars in the given alphabet/base.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base of the number, validated from 2 to alphabet length.
*
* @return string The number in base 10, following the Calculator conventions.
*/
final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string
{
// remove leading "zeros"
$number = \ltrim($number, $alphabet[0]);
if ($number === '') {
return '0';
}
// optimize for "one"
if ($number === $alphabet[1]) {
return '1';
}
$result = '0';
$power = '1';
$base = (string) $base;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$index = \strpos($alphabet, $number[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, $base);
}
}
return $result;
}
/**
* Converts a non-negative number to an arbitrary base using a custom alphabet.
*
* @param string $number The number to convert, positive or zero, following the Calculator conventions.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base to convert to, validated from 2 to alphabet length.
*
* @return string The converted number in the given alphabet.
*/
final public function toArbitraryBase(string $number, string $alphabet, int $base) : string
{
if ($number === '0') {
return $alphabet[0];
}
$base = (string) $base;
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, $base);
$remainder = (int) $remainder;
$result .= $alphabet[$remainder];
}
return \strrev($result);
}
/**
* Performs a rounded division.
*
* Rounding is performed when the remainder of the division is not zero.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
* @param int $roundingMode The rounding mode.
*
* @throws \InvalidArgumentException If the rounding mode is invalid.
* @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary.
*
* @psalm-suppress ImpureFunctionCall
*/
final public function divRound(string $a, string $b, int $roundingMode) : string
{
[$quotient, $remainder] = $this->divQR($a, $b);
$hasDiscardedFraction = ($remainder !== '0');
$isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-');
$discardedFractionSign = function() use ($remainder, $b) : int {
$r = $this->abs($this->mul($remainder, '2'));
$b = $this->abs($b);
return $this->cmp($r, $b);
};
$increment = false;
switch ($roundingMode) {
case RoundingMode::UNNECESSARY:
if ($hasDiscardedFraction) {
throw RoundingNecessaryException::roundingNecessary();
}
break;
case RoundingMode::UP:
$increment = $hasDiscardedFraction;
break;
case RoundingMode::DOWN:
break;
case RoundingMode::CEILING:
$increment = $hasDiscardedFraction && $isPositiveOrZero;
break;
case RoundingMode::FLOOR:
$increment = $hasDiscardedFraction && ! $isPositiveOrZero;
break;
case RoundingMode::HALF_UP:
$increment = $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_DOWN:
$increment = $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_CEILING:
$increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_FLOOR:
$increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_EVEN:
$lastDigit = (int) $quotient[-1];
$lastDigitIsEven = ($lastDigit % 2 === 0);
$increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
default:
throw new \InvalidArgumentException('Invalid rounding mode.');
}
if ($increment) {
return $this->add($quotient, $isPositiveOrZero ? '1' : '-1');
}
return $quotient;
}
/**
* Calculates bitwise AND of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function and(string $a, string $b) : string
{
return $this->bitwise('and', $a, $b);
}
/**
* Calculates bitwise OR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function or(string $a, string $b) : string
{
return $this->bitwise('or', $a, $b);
}
/**
* Calculates bitwise XOR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*/
public function xor(string $a, string $b) : string
{
return $this->bitwise('xor', $a, $b);
}
/**
* Performs a bitwise operation on a decimal number.
*
* @param 'and'|'or'|'xor' $operator The operator to use.
* @param string $a The left operand.
* @param string $b The right operand.
*/
private function bitwise(string $operator, string $a, string $b) : string
{
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$aBin = $this->toBinary($aDig);
$bBin = $this->toBinary($bDig);
$aLen = \strlen($aBin);
$bLen = \strlen($bBin);
if ($aLen > $bLen) {
$bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin;
} elseif ($bLen > $aLen) {
$aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin;
}
if ($aNeg) {
$aBin = $this->twosComplement($aBin);
}
if ($bNeg) {
$bBin = $this->twosComplement($bBin);
}
switch ($operator) {
case 'and':
$value = $aBin & $bBin;
$negative = ($aNeg and $bNeg);
break;
case 'or':
$value = $aBin | $bBin;
$negative = ($aNeg or $bNeg);
break;
case 'xor':
$value = $aBin ^ $bBin;
$negative = ($aNeg xor $bNeg);
break;
// @codeCoverageIgnoreStart
default:
throw new \InvalidArgumentException('Invalid bitwise operator.');
// @codeCoverageIgnoreEnd
}
if ($negative) {
$value = $this->twosComplement($value);
}
$result = $this->toDecimal($value);
return $negative ? $this->neg($result) : $result;
}
/**
* @param string $number A positive, binary number.
*/
private function twosComplement(string $number) : string
{
$xor = \str_repeat("\xff", \strlen($number));
$number ^= $xor;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$byte = \ord($number[$i]);
if (++$byte !== 256) {
$number[$i] = \chr($byte);
break;
}
$number[$i] = "\x00";
if ($i === 0) {
$number = "\x01" . $number;
}
}
return $number;
}
/**
* Converts a decimal number to a binary string.
*
* @param string $number The number to convert, positive or zero, only digits.
*/
private function toBinary(string $number) : string
{
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, '256');
$result .= \chr((int) $remainder);
}
return \strrev($result);
}
/**
* Returns the positive decimal representation of a binary number.
*
* @param string $bytes The bytes representing the number.
*/
private function toDecimal(string $bytes) : string
{
$result = '0';
$power = '1';
for ($i = \strlen($bytes) - 1; $i >= 0; $i--) {
$index = \ord($bytes[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, '256');
}
}
return $result;
}
}
PK Z0Z nEW EW src/BigDecimal.phpnu [ value = $value;
$this->scale = $scale;
}
/**
* Creates a BigDecimal of the given value.
*
* @throws MathException If the value cannot be converted to a BigDecimal.
*
* @psalm-pure
*/
public static function of(BigNumber|int|float|string $value) : BigDecimal
{
return parent::of($value)->toBigDecimal();
}
/**
* Creates a BigDecimal from an unscaled value and a scale.
*
* Example: `(12345, 3)` will result in the BigDecimal `12.345`.
*
* @param BigNumber|int|float|string $value The unscaled value. Must be convertible to a BigInteger.
* @param int $scale The scale of the number, positive or zero.
*
* @throws \InvalidArgumentException If the scale is negative.
*
* @psalm-pure
*/
public static function ofUnscaledValue(BigNumber|int|float|string $value, int $scale = 0) : BigDecimal
{
if ($scale < 0) {
throw new \InvalidArgumentException('The scale cannot be negative.');
}
return new BigDecimal((string) BigInteger::of($value), $scale);
}
/**
* Returns a BigDecimal representing zero, with a scale of zero.
*
* @psalm-pure
*/
public static function zero() : BigDecimal
{
/**
* @psalm-suppress ImpureStaticVariable
* @var BigDecimal|null $zero
*/
static $zero;
if ($zero === null) {
$zero = new BigDecimal('0');
}
return $zero;
}
/**
* Returns a BigDecimal representing one, with a scale of zero.
*
* @psalm-pure
*/
public static function one() : BigDecimal
{
/**
* @psalm-suppress ImpureStaticVariable
* @var BigDecimal|null $one
*/
static $one;
if ($one === null) {
$one = new BigDecimal('1');
}
return $one;
}
/**
* Returns a BigDecimal representing ten, with a scale of zero.
*
* @psalm-pure
*/
public static function ten() : BigDecimal
{
/**
* @psalm-suppress ImpureStaticVariable
* @var BigDecimal|null $ten
*/
static $ten;
if ($ten === null) {
$ten = new BigDecimal('10');
}
return $ten;
}
/**
* Returns the sum of this number and the given one.
*
* The result has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The number to add. Must be convertible to a BigDecimal.
*
* @throws MathException If the number is not valid, or is not convertible to a BigDecimal.
*/
public function plus(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0' && $that->scale <= $this->scale) {
return $this;
}
if ($this->value === '0' && $this->scale <= $that->scale) {
return $that;
}
[$a, $b] = $this->scaleValues($this, $that);
$value = Calculator::get()->add($a, $b);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the difference of this number and the given one.
*
* The result has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The number to subtract. Must be convertible to a BigDecimal.
*
* @throws MathException If the number is not valid, or is not convertible to a BigDecimal.
*/
public function minus(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0' && $that->scale <= $this->scale) {
return $this;
}
[$a, $b] = $this->scaleValues($this, $that);
$value = Calculator::get()->sub($a, $b);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the product of this number and the given one.
*
* The result has a scale of `$this->scale + $that->scale`.
*
* @param BigNumber|int|float|string $that The multiplier. Must be convertible to a BigDecimal.
*
* @throws MathException If the multiplier is not a valid number, or is not convertible to a BigDecimal.
*/
public function multipliedBy(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '1' && $that->scale === 0) {
return $this;
}
if ($this->value === '1' && $this->scale === 0) {
return $that;
}
$value = Calculator::get()->mul($this->value, $that->value);
$scale = $this->scale + $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the result of the division of this number by the given one, at the given scale.
*
* @param BigNumber|int|float|string $that The divisor.
* @param int|null $scale The desired scale, or null to use the scale of this number.
* @param int $roundingMode An optional rounding mode.
*
* @throws \InvalidArgumentException If the scale or rounding mode is invalid.
* @throws MathException If the number is invalid, is zero, or rounding was necessary.
*/
public function dividedBy(BigNumber|int|float|string $that, ?int $scale = null, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
if ($scale === null) {
$scale = $this->scale;
} elseif ($scale < 0) {
throw new \InvalidArgumentException('Scale cannot be negative.');
}
if ($that->value === '1' && $that->scale === 0 && $scale === $this->scale) {
return $this;
}
$p = $this->valueWithMinScale($that->scale + $scale);
$q = $that->valueWithMinScale($this->scale - $scale);
$result = Calculator::get()->divRound($p, $q, $roundingMode);
return new BigDecimal($result, $scale);
}
/**
* Returns the exact result of the division of this number by the given one.
*
* The scale of the result is automatically calculated to fit all the fraction digits.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @throws MathException If the divisor is not a valid number, is not convertible to a BigDecimal, is zero,
* or the result yields an infinite number of digits.
*/
public function exactlyDividedBy(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0') {
throw DivisionByZeroException::divisionByZero();
}
[, $b] = $this->scaleValues($this, $that);
$d = \rtrim($b, '0');
$scale = \strlen($b) - \strlen($d);
$calculator = Calculator::get();
foreach ([5, 2] as $prime) {
for (;;) {
$lastDigit = (int) $d[-1];
if ($lastDigit % $prime !== 0) {
break;
}
$d = $calculator->divQ($d, (string) $prime);
$scale++;
}
}
return $this->dividedBy($that, $scale)->stripTrailingZeros();
}
/**
* Returns this number exponentiated to the given value.
*
* The result has a scale of `$this->scale * $exponent`.
*
* @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000.
*/
public function power(int $exponent) : BigDecimal
{
if ($exponent === 0) {
return BigDecimal::one();
}
if ($exponent === 1) {
return $this;
}
if ($exponent < 0 || $exponent > Calculator::MAX_POWER) {
throw new \InvalidArgumentException(\sprintf(
'The exponent %d is not in the range 0 to %d.',
$exponent,
Calculator::MAX_POWER
));
}
return new BigDecimal(Calculator::get()->pow($this->value, $exponent), $this->scale * $exponent);
}
/**
* Returns the quotient of the division of this number by this given one.
*
* The quotient has a scale of `0`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function quotient(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
$quotient = Calculator::get()->divQ($p, $q);
return new BigDecimal($quotient, 0);
}
/**
* Returns the remainder of the division of this number by this given one.
*
* The remainder has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function remainder(BigNumber|int|float|string $that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
$remainder = Calculator::get()->divR($p, $q);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($remainder, $scale);
}
/**
* Returns the quotient and remainder of the division of this number by the given one.
*
* The quotient has a scale of `0`, and the remainder has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @return BigDecimal[] An array containing the quotient and the remainder.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function quotientAndRemainder(BigNumber|int|float|string $that) : array
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
[$quotient, $remainder] = Calculator::get()->divQR($p, $q);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
$quotient = new BigDecimal($quotient, 0);
$remainder = new BigDecimal($remainder, $scale);
return [$quotient, $remainder];
}
/**
* Returns the square root of this number, rounded down to the given number of decimals.
*
* @throws \InvalidArgumentException If the scale is negative.
* @throws NegativeNumberException If this number is negative.
*/
public function sqrt(int $scale) : BigDecimal
{
if ($scale < 0) {
throw new \InvalidArgumentException('Scale cannot be negative.');
}
if ($this->value === '0') {
return new BigDecimal('0', $scale);
}
if ($this->value[0] === '-') {
throw new NegativeNumberException('Cannot calculate the square root of a negative number.');
}
$value = $this->value;
$addDigits = 2 * $scale - $this->scale;
if ($addDigits > 0) {
// add zeros
$value .= \str_repeat('0', $addDigits);
} elseif ($addDigits < 0) {
// trim digits
if (-$addDigits >= \strlen($this->value)) {
// requesting a scale too low, will always yield a zero result
return new BigDecimal('0', $scale);
}
$value = \substr($value, 0, $addDigits);
}
$value = Calculator::get()->sqrt($value);
return new BigDecimal($value, $scale);
}
/**
* Returns a copy of this BigDecimal with the decimal point moved $n places to the left.
*/
public function withPointMovedLeft(int $n) : BigDecimal
{
if ($n === 0) {
return $this;
}
if ($n < 0) {
return $this->withPointMovedRight(-$n);
}
return new BigDecimal($this->value, $this->scale + $n);
}
/**
* Returns a copy of this BigDecimal with the decimal point moved $n places to the right.
*/
public function withPointMovedRight(int $n) : BigDecimal
{
if ($n === 0) {
return $this;
}
if ($n < 0) {
return $this->withPointMovedLeft(-$n);
}
$value = $this->value;
$scale = $this->scale - $n;
if ($scale < 0) {
if ($value !== '0') {
$value .= \str_repeat('0', -$scale);
}
$scale = 0;
}
return new BigDecimal($value, $scale);
}
/**
* Returns a copy of this BigDecimal with any trailing zeros removed from the fractional part.
*/
public function stripTrailingZeros() : BigDecimal
{
if ($this->scale === 0) {
return $this;
}
$trimmedValue = \rtrim($this->value, '0');
if ($trimmedValue === '') {
return BigDecimal::zero();
}
$trimmableZeros = \strlen($this->value) - \strlen($trimmedValue);
if ($trimmableZeros === 0) {
return $this;
}
if ($trimmableZeros > $this->scale) {
$trimmableZeros = $this->scale;
}
$value = \substr($this->value, 0, -$trimmableZeros);
$scale = $this->scale - $trimmableZeros;
return new BigDecimal($value, $scale);
}
/**
* Returns the absolute value of this number.
*/
public function abs() : BigDecimal
{
return $this->isNegative() ? $this->negated() : $this;
}
/**
* Returns the negated value of this number.
*/
public function negated() : BigDecimal
{
return new BigDecimal(Calculator::get()->neg($this->value), $this->scale);
}
public function compareTo(BigNumber|int|float|string $that) : int
{
$that = BigNumber::of($that);
if ($that instanceof BigInteger) {
$that = $that->toBigDecimal();
}
if ($that instanceof BigDecimal) {
[$a, $b] = $this->scaleValues($this, $that);
return Calculator::get()->cmp($a, $b);
}
return - $that->compareTo($this);
}
public function getSign() : int
{
return ($this->value === '0') ? 0 : (($this->value[0] === '-') ? -1 : 1);
}
public function getUnscaledValue() : BigInteger
{
return self::newBigInteger($this->value);
}
public function getScale() : int
{
return $this->scale;
}
/**
* Returns a string representing the integral part of this decimal number.
*
* Example: `-123.456` => `-123`.
*/
public function getIntegralPart() : string
{
if ($this->scale === 0) {
return $this->value;
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, 0, -$this->scale);
}
/**
* Returns a string representing the fractional part of this decimal number.
*
* If the scale is zero, an empty string is returned.
*
* Examples: `-123.456` => '456', `123` => ''.
*/
public function getFractionalPart() : string
{
if ($this->scale === 0) {
return '';
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, -$this->scale);
}
/**
* Returns whether this decimal number has a non-zero fractional part.
*/
public function hasNonZeroFractionalPart() : bool
{
return $this->getFractionalPart() !== \str_repeat('0', $this->scale);
}
public function toBigInteger() : BigInteger
{
$zeroScaleDecimal = $this->scale === 0 ? $this : $this->dividedBy(1, 0);
return self::newBigInteger($zeroScaleDecimal->value);
}
public function toBigDecimal() : BigDecimal
{
return $this;
}
public function toBigRational() : BigRational
{
$numerator = self::newBigInteger($this->value);
$denominator = self::newBigInteger('1' . \str_repeat('0', $this->scale));
return self::newBigRational($numerator, $denominator, false);
}
public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal
{
if ($scale === $this->scale) {
return $this;
}
return $this->dividedBy(BigDecimal::one(), $scale, $roundingMode);
}
public function toInt() : int
{
return $this->toBigInteger()->toInt();
}
public function toFloat() : float
{
return (float) (string) $this;
}
public function __toString() : string
{
if ($this->scale === 0) {
return $this->value;
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, 0, -$this->scale) . '.' . \substr($value, -$this->scale);
}
/**
* This method is required for serializing the object and SHOULD NOT be accessed directly.
*
* @internal
*
* @return array{value: string, scale: int}
*/
public function __serialize(): array
{
return ['value' => $this->value, 'scale' => $this->scale];
}
/**
* This method is only here to allow unserializing the object and cannot be accessed directly.
*
* @internal
* @psalm-suppress RedundantPropertyInitializationCheck
*
* @param array{value: string, scale: int} $data
*
* @throws \LogicException
*/
public function __unserialize(array $data): void
{
if (isset($this->value)) {
throw new \LogicException('__unserialize() is an internal function, it must not be called directly.');
}
$this->value = $data['value'];
$this->scale = $data['scale'];
}
/**
* This method is required by interface Serializable and SHOULD NOT be accessed directly.
*
* @internal
*/
public function serialize() : string
{
return $this->value . ':' . $this->scale;
}
/**
* This method is only here to implement interface Serializable and cannot be accessed directly.
*
* @internal
* @psalm-suppress RedundantPropertyInitializationCheck
*
* @throws \LogicException
*/
public function unserialize($value) : void
{
if (isset($this->value)) {
throw new \LogicException('unserialize() is an internal function, it must not be called directly.');
}
[$value, $scale] = \explode(':', $value);
$this->value = $value;
$this->scale = (int) $scale;
}
/**
* Puts the internal values of the given decimal numbers on the same scale.
*
* @return array{string, string} The scaled integer values of $x and $y.
*/
private function scaleValues(BigDecimal $x, BigDecimal $y) : array
{
$a = $x->value;
$b = $y->value;
if ($b !== '0' && $x->scale > $y->scale) {
$b .= \str_repeat('0', $x->scale - $y->scale);
} elseif ($a !== '0' && $x->scale < $y->scale) {
$a .= \str_repeat('0', $y->scale - $x->scale);
}
return [$a, $b];
}
private function valueWithMinScale(int $scale) : string
{
$value = $this->value;
if ($this->value !== '0' && $scale > $this->scale) {
$value .= \str_repeat('0', $scale - $this->scale);
}
return $value;
}
/**
* Adds leading zeros if necessary to the unscaled value to represent the full decimal number.
*/
private function getUnscaledValueWithLeadingZeros() : string
{
$value = $this->value;
$targetLength = $this->scale + 1;
$negative = ($value[0] === '-');
$length = \strlen($value);
if ($negative) {
$length--;
}
if ($length >= $targetLength) {
return $this->value;
}
if ($negative) {
$value = \substr($value, 1);
}
$value = \str_pad($value, $targetLength, '0', STR_PAD_LEFT);
if ($negative) {
$value = '-' . $value;
}
return $value;
}
}
PK Z0Z<